The influence of the chloride currents on action potential firing and volume regulation of excitable cells studied by a kinetic model.
نویسندگان
چکیده
In excitable cells, the generation of an action potential (AP) is associated with transient changes of the intra- and extracellular concentrations of small ions such as Na(+), K(+) and Cl(-). If these changes cannot be fully reversed between successive APs cumulative changes of trans-membrane ion gradients will occur, impinging on the cell volume and the duration, amplitude and frequency of APs. Previous computational studies focused on effects associated with excitation-induced changes of potassium and sodium. Here we present a model based study on the influence of chloride on the fidelity of AP firing and cellular volume regulation during excitation. Our simulations show that depending on the magnitude of the basal chloride permeability two complementary types of responsiveness and volume variability exist: (i) At high chloride permeability (typical for muscle cells), large excitatory stimuli are required to elicit APs; repetitive stimuli of equal strength result in almost identical spike train patterns (Markovian behavior), however, long excitation may lead to after discharges due to an outward directed current of intracellular chloride ions which accumulate during excitation; cell volume changes are large. (ii) At low chloride permeability (e.g., neurons), small excitatory stimuli are sufficient to elicit APs, repetitive stimuli of equal strength produce spike trains with progressively changing amplitude, frequency and duration (short-term memory effects or non-Markovian behavior); cell volume changes are small. We hypothesize that variation of the basal chloride permeability could be an important mechanism of neuronal cells to adapt their responsiveness to external stimuli during learning and memory processes.
منابع مشابه
The effect of lead (Pb2+) on electrophysiological properties of calcium currents in F77 neuron in Helix aspersa
Ion channels are responsible for control of cell function in excitable tissues such as heart and brain and also in organs and tissues traditionally thought to be non- excitable including liver and epithelium. In the present research, the effect of lead (Pb2+) on Ca2+ -dependent action potential and currents was studied in F77 neuronal soma membrane of Helix aspersa. For this purpose, action pot...
متن کاملEffects of ionic parameters on behavior of a skeletal muscle fiber model
All living cells have a membrane which separates inside the cell from it's outside. There is a potential difference between inside and outside of the cell. This potential difference will change during an action potential. It is quite common to peruse action potentials of skeletal muscle fibers with the Hodgkin-Huxley model. Since Hodgkin and Huxley summarized some controlling currents like inwa...
متن کاملComparison of the effect of quasitrapezoidal and rectangular pulses on bio- electrical activity, calcium spike properties and afterhyperpolarization potentials of Fl cells of Helix aspersa using intracellular recording
While the effect of changes of stimulus waveform (quasitrapezoidal and rectangular current pulses) on nerve activation is clear, but there is no evidence on the effect of quasitrapezoidal pulses on ionic currents of cellular membrane. In the present study, the effect of depolarizing quasi-trapezoidal current pulses, in comparison with that of depolarizing rectangular current pulses, on firing...
متن کاملA Simulation-Based Study of Dorsal Cochlear Nucleus Pyramidal Cell Firing Patterns
A two-variable integrate and fire model is presented to study the role of transient outward potassium currents in producing temporal aspects of dorsal cochlear nucleus (DCN) pyramidal cells with different profiles namely the chopper, the pauser and the buildup. This conductance based model is a reduced version of KM-LIF model (Meng & Rinzel, 2010) which captures qualitative firing features of a...
متن کاملCoincidences with the Artificial Axon
The artificial axon is an excitable node built with the basic biomolecular components and supporting action potentials. Here we demonstrate coincidence firing (the AND operation) and other basic electrophysiology features such as increasing firing rates for increasing input currents. We construct the basic unit for a network by connecting two such excitable nodes through an electronic synapse, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of theoretical biology
دوره 276 1 شماره
صفحات -
تاریخ انتشار 2011